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Summary. Theoretical studies on the optimal numbers 
of  components in mixtures (for example multiclonal 
varieties or mixtures of  lines) have been performed 
according to phenotypic yield stability (measured by 
the parameter 'variance'). For each component  i, 
i = 1, 2 . . . .  , n, a parameter ui with 0 _-_ ui --< 1 has been 
introduced reflecting the different survival and yield- 
ing ability of  the components. For  the stochastic 
analysis the mean of  each ui is denoted by Wi and its 
variance by tri 2. For  the character 'total yield' the 
phenotypic variance V can be explicitly expressed 
dependent on l) the number  n of  components in the 
mixture, 2) the mean a 2 of  the a~, 3) the variance of  
the ai 2, 4) the ratio O'2/~ 2 and 5) the ratio a2/2 2 where 2 
denotes the mean of  the Wi and a 2 is the variance of  
the Wi. According to the dependence of  the phenotypic 
stability on these factors some conclusions can be easily 
derived from this V-formula. Furthermore, two dif- 
ferent approaches for a calculation of  necessary or 
optimal numbers of  components using the phenotypic 
variance V are discussed: A. Determination of  'optimal '  
numbers in the sense that a continued increase of  the 
number  of  components brings about no further signifi- 
cant effect according to stability. B. A reduction of  b % 
of  the number  of  components but nevertheless an un- 
changed stability can be realized by an increase of  the 
mean 2 of  the ~-iby 1% (with a 2 and a 2 assumed to be 
unchanged). Numerical  results on n (from A) and 1 
(from B) are given. Computing the coefficient of  varia- 
tion v for the character 'total yield' and solving for the 
number  n of  components one obtains an explicit ex- 

* This publication is an extended version of a lecture given at 
the 1984-EUCARPIA meeting (Section Biometrics in Plant 
Breeding) in Stuttgart-Hohenheim (Federal Republic of Ger- 
many) 

pression for n dependent on v and the factors 2 . - 5 .  
mentioned above. In the special case of  equal variances, 
a ~ = ~  for each i, the number  n depends on v, 
x = (a0/2) 2 and y = (au/2) 2. Detailed numerical results 
for n = n (v, x, y) are given. For x =< 1 and y _ 1 one 
obtains n = 9 ,  20 and 79 for v = 0 . 3 0 ,  0.20 and 0.10, 
respectively while for x =< 1 and arbitrary y-values the 
results are n = 11, 24 and 95. 

Key words: Mixtures - Number  of  components - 
Phenotypic yield stability - Stability parameter:  vari- 
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Introduction and problem 

The central problem of  this paper "evaluation of  
optimal or necessary numbers of  components in mix- 
tures" is well-known and has been intensively discussed 
in many experimental investigations using very dif- 
ferent crops (Clay and Allard 1969; Schutz and Brim 
1971; Marshall and Allard 1974; Luthra and R a t  1979; 
Pfahler and Linskens 1979). Some theoretical studies 
on this topic are present in the literature (Marshall and 
Brown 1973; Kampmeijer  and Zadoks 1977; Trenbath 
1977; Ostergaard 1983) but they are mainly concerned 
with special aspects and problems - development of  
epidemics, analysis of  interactive effects in mixtures, 
etc. No general theoretical approach with regard to an 
evaluation of  optimal numbers of  components in mix- 
tures has been worked out. 

Recent activities and requests from forestry, especially 
from forest tree breeding, gave rise to research interest in this 
theoretical field: in the last years essential improvements of 
methods of vegetative propagation have been achieved, for 
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example, by using cuttings and tissue culture techniques. 
Breeders of very different tree species succeeded in producing 
clones relevant for practical forestry. Referring to the negative 
experiences with genetically uniform varieties in agricultural 
crop science, most forest tree breeders propose the develop- 
ment of multiclonal varieties for maintaining some genetic 
diversity in the stands. Multiclonal varieties are mixtures of 
different clones artificially created with definite proportions. 
At present time this problem is of particular importance for 
the fast growing tree species like poplars and aspen. 

Coming from this background the models and concepts of 
our following theoretical investigations have been formulated 
according to this field of applications. But, nevertheless, these 
studies and results are of an extended validity for the field of 
agricultural crop science and plant breeding too: 1) including 
multilines, that means mixtures of isolines that differ by 
single, major genes for reaction to a pathogen and 2) including 
mixtures of an arbitrary number of pure lines which are more 
different among each other than isolines. 

To provide a simultaneous discussion of these situations - 
multilines, multiclonal varieties and mixtures of lines - we 
use the general terms 'mixture' and 'components'. 

Higher yields, improved resistance properties and espe- 
cially an increased phenotypic stability are the main advan- 
tages of such a variety structure. Here in this paper we want to 
restrict our theoretical studies to an analysis of the phenotypic 
yield stability measured by the parameter 'variance'. There 
are many other stability parameters in discussion but here we 
don't enter into this topic. 

The aim of  this paper is to give some statistical ap- 
proaches and numerical results concerning the optimal 
or necessary number  of  components in mixtures with 
respect to phenotypic stability. 

In these investigations we don' t  consider successive 
generations. Only one period from the initial composi- 
tion of  the mixture until the final harvest shall be 
analysed. 

Theoretical investigations and some numerical results 

For each component  i, i = 1, 2 . . . . .  n, we introduce a 
parameter ui with 0 ~ ui--< 1 reflecting the different 
survival of  the components, ui gives the relative 
probability of  surviving for component i. 

For such long-living organisms as forest trees, some 
special aspects must be considered: evaluation of  
juvenile-mature correlations, effects of  different 
thinning procedures, etc. For the quantitative analysis, 
therefore, it is convenient to use two characters and 
parameters: 'mortality' (natural and artificial (thinning)) 
or survival on the one side and 'yielding-ability' on the V = - - .  n 
other side. 

~ ( ~  ) where: 
Total yield = N �9 L i (1) a~ = 

i = l  
v ( d )  = 

where: x = 

fi = frequency of  component  i in the initial composi- y = 
tion of  the mixture 2 = 

ui = survival-parameter of  component i Cr2u = 

n 
fi = mean of  the U i'S." 0. = ~ fi Ui 

i = l  

n = number of  components 
L i = mean yield of  component i (per plant) 
N = final number  of  plants. 

For  all the following theoretical investigations we 
presume a proportionality between L i and ui:  L i : L j  

-- ui:  uj for all i and j (see "discussion"). Without loss 
of  generality the maximal value of  the ui's may be 
assumed to be one and the corresponding L i will be 
denoted by Lma x. Using this component as a reference 
component one obtains: Li: Lmax = ui: 1 or Li = ui" Lmax 
(for each i). From (1) it follows: 

total yield = N Lma x ' ~ fi ' u2 (2) 
i = l  O_ 

For the special case of  equal proportions of  the 
components in the initial composition of  the mixture 
(fi = 1/n for each i) formula (2) gives for the total yield 
(expressed in N Lmax-Units): 

total yield = i=n I (3) 

ui 
i = l  

To enable a stochastic analysis we assume that the 
ui, i =  1,2 . . . . .  n, are independent random variables 
with mean ui and variance d .  The simplifying as- 
sumption of  a negligible skewness Yi and kurtosis 6i of  
the distribution of  ui (for each i) seems to be justified 
(see Hiihn 1984 and Appendix 1). 

The phenotypic yield stability of  the mixture can 
be expressed quantitatively by the variability of  the 
'total yield' from (3) (for each n and variable ui, 
i = 1, 2 . . . . .  n). Here we use the variance V of  the total 
yield as a stability parameter. 

An investigation of  V requires a computation of  the 
variance of  the ratio of  the two random variables 

ui 2 and ~ ui. After some extensive algebraic and 
i = l  i= l  

statistical calculations one obtains the following ap- 
proximation (proof, see Appendix 1): 

[ ( ll l + x 2 + y Z + 2 y + 2 x  y + ~ ] ]  (4) 

mean of  the a 2, 
variance of  the a 2, 
O'2/~1, 2 ' 

O'2/,~ 2 ' 

mean of  the ~ iand  
variance of  the Wi. 



In the special case of  equal var iances  aT = a 2 for 
each i, i =  1,2 . . . . .  n, the ratio V(a~)/(a2)  2 vanishes 
and the variance V depends on x, y, n and a~: 

V =  a 2 . ( l + x  2 + y z + 2 y + 2 x y ) .  (5) 
n 

For convenience we proceed from this expression 
(5) in the following discussion of  conclusions. In the 
general case of  unequal variances a 2, i = 1, 2 . . . . .  n, we 
only have to introduce the additional term V(a~)/(a2) 2 
and we must use the generalized expression (4). 

The variance V and, consequently, the phenotypic 
stability of  the mixture also depend on four factors: 

1. Number  n of  components. 
2. Variance a0 z of  the distribution of  the ui for each 

component  i, i = 1,2 . . . . .  n. 
3. Mean 2 of  the Wi. 
4. Variance a2u of  the Wi. 

According to these factors 1 -  4, some conclusions 
can be easily derived from (5): 

Ad 1 For fixed parameters a 2, 2 and a2u the stability of  
the mixture increases with an increasing number  of  
components. 
A d 2  For fixed parameters n, 2 and a 2 the stability of  
the mixture decreases with an increasing variance a02. 
Ad 3 For fixed parameters a02, n and a2u the stability of  
the mixture increases with an increasing mean 2 of  
the ui- 
Ad 4 For fixed parameters a0 z, n and 2 the stability of  
the mixture decreases with an increasing variability of  
the Wi. 

All these conclusions concerning the stability of  a 
mixture are of  course, very obvious. The main im- 
portance o f  this theoretical approach, however, doesn't 
refer to these obvious statements but to the explanation 
of  the explicit functional dependence of  the phenotypic 
variance V on the interesting parameters n, x, y and a02 
given by (5). Furthermore, this function V= V (n, x, y, a02) 
can be used to derive some useful numerical results on 
the optimal or necessary number  of  components. Two 
such approaches shall be mentioned here without 
going into any theoretical and numerical details: 

A. For fixed a~, 2 and a 2 the stability increases with in- 
creasing n. Then we can ask for the number  n where 
the stability difference between n and n + l  com- 
ponents is smaller than a certain percentage g of  the 
stability with n components. 

This condition gives (using the phenotypic standard 
deviation): 

n >_- [(1 - g)-Z_ 1 ] - ' .  (6) 

For g = 0.10, 0.05 and 0.01 we obtain n = 5, 10 and 
50 respectively. That means: if the improvement in 
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stability caused by the addition of  one further com- 
ponent shall be smaller than 5% of  the previous stabil- 
ity this requirement may be accomplished by n = 10 
components. For g = 10% this number  reduces to n = 5 
(Hiihn 1984). 

Numbers  n determined in this way may be consid- 
ered to be 'optimal '  in the sense that a further increase 
of  the number of  components is of  no significant effect 
according to stability. 
B. A reduction of  the number  n of  components in a 
mixture results in a decrease of  the stability (with fixed 
a 2, 2 and a2). We may ask for the conditions that this 
stability decrease can be compensated and avoided by 
changed parameter values of  ao 2, 2 and a2~. In spite of  
the reduction of  the number  of  components the stabil- 
ity of  the mixture would remain unchanged. 

There are several possibilities for realization. But 
here we only mention the following simple approach: 
assuming unchanged a 2 and a2u reduction of  b % of the 
number  of  components may be achieved by an increase 
of  the mean 2 of  the ui by 1%. Such an increase of  2 
can be possibly realized by a selection of  suitable com- 
ponents. 

(5) and the condition "equal stability for n and 
n (1 - b/100) components" give (for unchanged a 2 and 

1 + (x*) 2+  (y,)2 + 2x* y* + 2y* b 
1 (7) 

1 + x 2 + y 2 + 2 x y + 2 y  

where 

100 

X*--  X 

( 1 +  ] / 2 and y * = (  y ) 1 2" 

lOO! 1 + 1- 6- 

Using the abbreviations K z = 1 + x 2 + y2 + 2 x y + 2 y, 
d = (1 + 1/100) 2 and e =  1 - b/100 the solution of  (7) 
for d gives: 

y + Vy 2 + (x + y ) 2 .  ( eK 2 -  1) 
d = e K 2 -  1 (8) 

For a given percentage b and given numerical 
values for x and y the percentage 1 can be calculated 
from (8). A reduction of  b % of the number  of  com- 
ponents and an increase of  the mean 2 of  the ~ b y  1% 
are compensating effects. 

The stability of  the mixture will be unchanged. For  
a wide range of  parameter values relevant for practical 
applications some numerical results shall be men- 
tioned: For a reduction of  b = 5% of  the number  of  
components an increase 1 of  the mean 2 of  2 - 4 %  
would be required. For  b = 10% we obtain 3 - 9 % ,  for 
b = 20% an increase to 7 -20%,  for b = 30% we have 
11 - 40% and fin~tlly for b = 50% these percentages in- 
crease up to 21 - 50%. Very low x-values together with 
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Table 1. Necessary numbers of components in mixtures for 
different x- and y-values and some numerical values for the 
coefficient of variation v 

x ~  v = 0.30 

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 

0.2 2 2 3 3 3 3 3 3 3 3 
0.6 5 6 6 6 6 7 7 7 7 7 
1.0 7 8 9 l0 10 10 ll  11 11 l l  
1.4 10 11 12 13 14 14 14 15 15 15 
1.8 12 14 15 16 17 18 18 18 19 19 
2.2 16 18 19 20 21 21 22 22 22 23 
2.6 19 21 22 23 24 25 26 26 26 27 
3.0 22 24 26 27 28 29 29 30 30 31 
3.4 26 28 29 31 32 32 33 34 34 34 
3.8 30 32 33 34 35 36 37 37 38 38 

x ~  v = 0.20 

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 

0.2 4 5 5 5 5 5 5 5 5 5 
0.6 10 12 13 13 14 14 14 15 15 15 
1.0 15 18 20 21 22 23 23 24 24 24 
1.4 21 25 27 29 30 31 32 32 33 33 
1.8 27 31 34 36 38 39 40 41 41 42 
2.2 35 39 42 44 46 47 48 49 50 51 
2.6 42 46 49 52 54 55 57 58 59 59 
3.0 50 54 58 60 62 64 65 66 67 68 
3.4 58 62 66 68 70 72 74 75 76 77 
3.8 67 71 74 77 79 81 82 84 85 86 

v=0.10 

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 

0.2 16 18 19 19 20 20 20 20 20 20 
0.6 38 46 50 52 54 56 56 57 58 58 
1.0 60 71 79 83 87 89 91 93 94 94 
1.4 83 97 107 113 118 122 125 127 129 130 
1.8 108 124 135 144 150 155 159 161 I63 166 
2.2 137 154 166 174 182 188 192 195 198 201 
2.6 167 184 196 206 214 220 226 229 233 236 
3.0 198 215 229 239 247 254 259 264 267 271 
3.4 231 248 261 272 280 287 294 299 302 306 
3.8 265 281 294 305 315 321 328 333 337 342 

very low y-values are the only exceptions of these sum- 
marized numerical results. In these extreme situations 
enlarged l-percentages are necessary (for explanations 
and further numerical results, see Hfihn 1984). 

In the preceding theoretical investigations the 
'variance'  has been used as a stability parameter. In 
several aspects, however, the statistic 'coefficient of 
variation'  shows some advantages compared to the 
common 'variance'  - especially if variability com- 
parisons are intended. The main argument  for the 
preference of the 'coefficient of variation'  depends on 
the fact that we want to characterize yield stability 

independent  from the yield level. 

Table 2. Necessary numbers of components in mixtures for 
different intervals of x and y and for different values for the 
coefficient of variation v 

Intervals for x and y No. n of components 

v=0.30 v=0.20 v=0.10 

0<x__<0.5, O < y =  < 0.5 5 10 38 
0<x_~0.5, 0 . 5 < y =  < 1 5 l l  42 
0<x_-<0.5, l < y - <  2 6 12 46 
0<x_<0.5,  2<y_~  3 6 12 48 

0.5<x-< 1, 0<y_~  1 9 20 79 
0 . 5 < x =  < 1, 1 <y-<  2 10 22 88 
0 .5<x -< 1, 2<y_~  3 11 24 93 

l < x  -< 2, 0 < y ~  1 17 38 150 
l < x _  -< 2, l < y  -< 2 19 42 168 
l < x - <  2, 2 < y _ - <  3 20 45 178 
2<x_-< 3, 0 < y - <  1 26 58 229 
2<x_-< 3, 1 <y -<  2 28 63 251 
2<x_-< 3, 2<y=< 3 30 66 264 

After some simple calculations the expectation ~ of 
the total yield (expressed in N Lmax-Units, see formula 
(3)) can be approximated by 

l + x + y  V ~  (9) ~i! (total yield) - V~ 

(proof, see Appendix 2). 
We denote the coefficient of variation for the 

character 'total yield' by v. Combining (9) and (4) and 
solving for the number  n of components gives: 

[ ( x l + x 2 + y 2 + 2 y + 2 x  Y+ (--/-2V-}/ 

(lO) 
n - v 2 (1 + x + y)2 

For the special case of equal variances ai: = a~ for 
each i, i = 1, 2 . . . . .  n, formula (10) reduces to: 

X [1 + X 2 + y2 + 2y + 2x y] (11) 
n - -  v 2(1 + x +y)2 

The following numerical  calculations proceed from 
(11). The estimates for the number  n of components 
obtained by this approach are therefore lower bounds 
for the ' true'  number  of components. With unequal 
variances a 2, i = 1, 2 . . . . .  n, the t e r m  V(o-2)/(o'2) 2 must 

be considered and the numerator  in (11) increases 
leading to an increased number  n. Numerical  calcula- 
tions have been performed for the intervals 0 < x --< 4 
and 0 < y -< 4 and the following values for the coeffi- 
cient of variation: v = 10%, 20% and 30%. These xy- 
intervals are extremely widened to include all possible 
numerical x- and y-values. Most realistic intervals for x 
and y are of course 0 < x _-< 1 and 0 < y _-< 1. Extensive 
numerical calculations and results for n dependent  on 
x, y and v are presented in Hfihn (1984). 
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Some of these results are given in Table 1. For 
x = 1 and y -  1 one obtains n = 9, 20 and 79 for 
v = 0.30, 0.20 and 0.10 respectively while for x _-< 1 and 
y -<3  the results are n = l l ,  24 and 93. In Table2 
further results have been summarized for some inter- 
esting intervals for x and y. These numbers from 
Table 2 are the largest values of n = n (x, y, v) for the 
given xy-regions. For practical applications the most 
interesting situations will be "low x, low y, larger v". 
For example: For x _-< 1, y -< 2 and v -- 0.30 one obtains 
n = 1 0 .  

The necessary number of components increases 
with 1) increasing x, 2) increasing y and 3) decreas- 
ing v. 

Discussion 

The preceding theoretical investigations are based on a 
simple model originally developed for studies with 
forest trees. Hence two parameters have been intro- 
duced to provide a quantitative analysis: A 'survival- 
parameter '  describing shifts of the composition of the 
population and a 'yielding ability-parameter'  char- 
acterizing the different yielding potential of the com- 
ponents independent on the selective effects above 
mentioned. 

We don't consider successive generations. Only one 
period from the initial composition of the mixture 
until the final harvest shall be analysed. 

This general ' two-parameter-approach' (survival 
and yielding ability) has been simplified in our theo- 
retical studies by assuming a proportionality between 
these two characters: With regard to long-living 
organisms like forest trees this assumption seems to be 
justified. Many natural selection processes and the dif- 
ferent artificial thinning procedures too are in ac- 
cordance with this simplifying assumption. 

For annual agricultural crops one might critically 
discuss it's validity and suitableness. Many examples 
have been cited that selection may eliminate the best- 
yielding types in mixtures (for example: Harlan and 
Martini 1938; Suneson and Wiebe 1942; Suneson 1949; 
Jennings and Herrera 1968). But on the other hand, 
many experimental investigations are known from the 
literature which confirm that the lower yielding com- 
ponents are often maintained in the mixtures with 
lower frequencies, and vice versa (for example: Sune- 
son 1956; Suneson and Ramage 1962; Workman and 
Allard 1964; Allard and Adams 1969; Murphy, Helsel, 
Elliott, Thro and Frey 1982). Therefore, the model 
used in the previous theoretical investigations and 
consequently the derived numerical results on neces- 
sary numbers of components are of interest and rele- 
vance for agricultural crops too. 

For the same crop a different characterization and 
interpretation may be necessary according to the kind 
of the character just studied: utilization of vegetative 
or generative parts of the plant. 

Furthermore, in our opinion the simplifying as- 
sumptions: 
a) Uncorrelated variables ui and uj for i 4 j :  
Cov (ui, uj) = 0 for i :1: j. 
b) No skewness and no kurtosis of the distribution of ui 
(for each i): Yi = 6i = 0 for each i. 
c) No correlation between the variance aT and the 
mean ui and ~ respectively: Cov (ffi, ~i 2) = Coy (g~, cri 2) 
=0.  
d) Equal proportions of the components in the mix- 
ture: fi = 1/n for each i. 
are no serious restriction and they don't affect the 
numerical results too much (Hiihn 1984). 

The effect of another simplyfying assumption 
(equal variances a 2 of all the components: cri 2 = cr 2 for 
each i, i =  1, 2 . . . . .  n) has been explained completely 
by the previous investigations: For equal variances one 
obtains expressions (5) and (11) for the variance V and 
the number n of components respectively. In the gen- 
eralized situation with unequal variances ai 2 the for- 
mulae for V and n remain almost unchanged: ~r 2 be- 
comes cr 2 and besides this slight modification we only 
have to introduce an additional term V(o'i2)/(o-2) 2 
which measures the effect of differences between the 
variances a 2. 

We suppose that the simplifying assumptions 
a ) -  d) mentioned above can be discussed in an analo- 
gous manner. We think this will result in similar gen- 
eralizations by introducing some further terms with a 
maintenance of the basic formulae (5) and (l l) .  But 
these theoretical investigations of a ) -  d) have not been 
performed until now. 

Another generalization has been discussed by Hfihn 
(1984): The model can be extended in such a way that 
it includes the analysis of competitive effects between 
the different components in the mixture. This gen- 
eralized model, however, has been investigated in 
Hfihn (1984) only for a deterministic approach. The 
numerical magnitude of the number of components 
was not altered too much by including the competitive 
effects (Hfihn 1984). 
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Appendix 1. Proof of expressions (4) and (5) for the pheno- 
typic variance 

For the variance of the ratio of the two random variables Y 
and Z the following approximation holds (Rasch 1978): 

where: Y, ~ = mean of Y and Z; V(Y), V(Z) = variances of Y 
and Z and Coy (Y, Z)=  covariance between Y and Z. Addi- 
tionally, we use the symbol t~ (Y) for the expectation of a 
random variable Y. 

For each component i, i = 1, 2 . . . . .  n, we have: 

(~(ui)=Wii and V(ui)=0-i 2. (2) 

Skewness and kurtosis of the distribution of ui will be 
denoted by Yi and 6i respectively. With this notations we ob- 
tain: 

{~ Ui = 1.17 
i i=l 

i=l '= 

V ui a (3) 
i 

V ui 2 = [2 a4 + 4 gi20-i2 + 4~i ai3 ?i + ai4 6i] 
i i=l 

Cov  u 2, U i = [ 2 <  0 -2 + 0-3 Yi]. 
i i=l i=l 

(Assumption: variables ui are uncorrelated among each other 
- that means: Coy (u i, uj) = 0 for i =r j.) 

The parameters Yi and 6i are  contained in the terms 
n n n 

Wii0- 3 Yi, ~ 0-4 6i and ~ 0-3 Yi. Because of the different 
i=l i=l i=l 
signs of ?i and 6i for different components these effects may be 
partially cancelled out. Since we are only interested in ap- 
proximate results the simplification 7i = 6i = 0 for each i may 
be justified. 

Putting the explicit expressions (3) into (1) it follows: 

n 2 

(2 i __~10.4 + 4 i ~  ~i20.2 ) + i=l '= . 2 _ 2  

V=V = 

i=l i=J 2 ~ ~iai 2 
'~U~i i=l 

i=l (4) 



Finally, we will assume: 

Cov (~-, ~?) =Cov (~2, d )  = 0. (5) 

Furthermore we introduce the following denotions: 

2 = ~ ~i/n (mean of the W0, aZu = variance of the Wi and 
i = l  

a T =  ~ cr~/n (mean of the cr2). Applying (5) to ~ wiza 2 and 
i = l  i = l  ~ Wiai z and putting into (4) gives: 

i = l  

2 ai4+ ~ -  4n(a2) 2 
i=, 2 

V = (6) 
n 2 ,~2 

Using the variance V (c~ 2) of the variances a 2 the following 
relation holds: 

a~ = n (0"2~) 2 q- nV(ai  2) (7) 
i = l  

(6) together with (7) gives: 

a T 2 V ( d )  
V = - - [ l + x Z + y 2 + 2 x y + 2 y ] +  2------- T -  

n n 

o~ [ [ v ( d )  \ l  
= - n  I + x 2 + y 2 + 2 y + 2 x t y + ~ } ]  (8) 

where the abbreviations x = ~2/22 and y = cr2/22 have been 
used. 

In the special case of equal variances a~ for the different 
components: a~= a02 for each i, i =  1, 2 . . . . .  n, formula (8) 
reduces to: 

V =  a2~ (1 + x2+ y2+ 2y + 2x y).  (9) 
n 
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Appendix 2. Proof of expression (9) for the expectation of the 
total yield 

For random variables Y and Z with 4 ~- C, the following 
inequality holds: L 

cCv  (1) 

(see, for example: Monrgenstern 1968) n 

If we identify Y - ~'~ ui 2 and Z - ~ ui, inequality (1) gives 
i = l  i = l  

(i)  (i together with the explicit terms for I~ ui , I~ u and 
i i 

V ui from appendix 1: 
i 

n Ui2<  n 
(total I ~ ~i2 + i_~ l C ~i_~1 a~ 

i=~ ~ - n (2) 
,yield/ i=~l Uii i ~ l  Uii 

Because of 0 ~ u ui ~ 1 we can use C = 1 and from 
(2) it follows: i= 1 

~ (total I a--i + a~ + 22 I l / ~  
\yield ] 2 -~ 2----~" (3) 

Applying the abbreviations x = a2/22 and y = a~/22 we obtain: 

~ ( t ~  2 ~V-~-~  ' (4) 
\yield ] 

For sufficiently large n we therefore get the approximate 
result: 

(total / 1 + x + y V ~  
t~ \yield / -~ ]/x " 

(5) 


